
978-1-7281-9899-6/20/$31.00 ©2020 IEEE

Verifying multiple virtual networks in Software

Defined Networks

Igor Burdonov

Software Engineering department

Ivannikov Institute for System Programming

of RAS

Moscow, Russia

igor@ispras.ru

Nina Yevtushenko

Software engineering deparment

Ivannikov Institute for System

Programming

Moscow, Russia

evtushenko@ispras.ru

Alexandr Kossachev

Software Engineering department

Ivannikov Institute for System Programming

of RAS

Moscow, Russia

kos@ispras.ru

Abstract— Software Defined Network (SDN) technology is one

of the modern network virtualization technologies. When

implementing a virtual network on the SDN data plane, undesired

effects may occur: the appearance of undesired paths where

packages can be sent, "looping" when the packages are infinitely

cycled and infinitely cloned, duplicate paths when the host receives

the same package several times. We show that these effects can

occur for the joint implementation of several virtual networks

even if the implementation of each separate virtual network does

not cause these effects. A method for verifying the implementation

of several virtual networks is proposed. A sufficient condition is

established for the graph of physical connections when any set of

virtual networks can be implemented without the occurrence of

the above undesirable effects.

Keywords— Software Defined Networks (SDN), Network

Virtualization, Graph paths, Edge Simple Paths, Arc Closure,

Verification

I. INTRODUCTION

Software defined networking [1][2][3] with separated data and

control planes is one of the main technologies for implementing

virtual networks. On the data plane, hosts exchange packets

through intermediate switches. A switch after receiving a packet

forwards it without any changes to one or more of its neighbors

(hosts or switches); the choice of neighbor nodes depends on the

neighbor (a host or a switch) from which the packet has been

received and on the parameter values of the packet header. If the

switch forwards a packet to several neighbors, then this means that

the packet is cloned and then its clones are moved over the network

independently of each other. The switch rules are set by the SDN

controller(-s) [4]. The set of parameter values of the packet header

affecting the packet forwarding is called the packet identifier.

Packets with different identifiers are moved over the network

independently of each other using different paths from a host-

sender to a host-recipient.

The virtual network is described by the set of (ordered) pairs of

hosts (a sender, a recipient) with corresponding paths for packets

with the given identifiers. This, in turn, defines the switch rules that

must be installed when the switches are configured.

When implementing a virtual network for a given set of paths,

the problem of the implementation of undesired paths can occur

[5][6][7]. First, it is a problem of duplicating paths when a host

receives the same packet several times. Second, the cycling paths

where packets can infinitely move can also occur. This problem

was studied in a number of works [5][6][7] in which a number of

solutions have been proposed.

Here we note that the problem of undesired paths can occur

when implementing several virtual networks even in the case when

the implementation of each separate virtual network does not

induce undesired paths. The reason is the interference of the

implementations of different virtual networks for packets with the

same packet identifier, and this paper is devoted to the study of

such influence. The main attention is paid to the problem of the

cycle appearance due to the composition of path segments that

appear in the implementation of different virtual networks for the

same packet identifiers.
The structure of the paper is as follows. Section 2 contains the

preliminaries and problem setting. Sections 3, 4 and 5 are devoted
to the verification of the implementations of several virtual
networks, especially for the absence of cycles. In Section 3, the
algorithm is presented [6] for checking the existence of undesired
paths and, in particular, the absence of cycling paths when
implementing one virtual network. In Section 4.A, an algorithm is
proposed for checking the absence of cycling paths when
implementing several virtual networks. In Section 4.B, the
algorithm of Section 4.A is modified to be more efficient but
without specifying packet identifiers for cycling paths. A sufficient
condition for implementing any set of virtual networks without
undesired paths is proposed in Section 5. This condition is an
extension of a similar condition for implementing a separate virtual
network proposed in [5][7]. In conclusions, the results are summed
up and the directions for future research are discussed.

II. PRELIMINARIES AND THE PROBLEM SETTING

The data plane of the software defined network is modeled by

a finite undirected connected graph G = (V, E) without multiple

edges and loops, where V is a set of vertices that are hosts and

switches, and E  V  V is a set of edges displaying physical

communication channels between vertices. We assume that each

host is connected with exactly one switch. Without loss of

generality, we can assume that all the vertices of degree one are

hosts.

Since the graph G is undirected and there are no multiple edges,

the edge can be defined as a pair of vertices a and b, which are

connected by this edge: ab or ba. A path is a sequence of neighbor

vertices through which it passes. The path is called complete if the

head and tail vertices are hosts, while all intermediate vertices are

switches. The path where all the vertices (arcs) are pair-wise

different, is called the vertex simple (or edge simple).

We further denote the vertices of the graph by lowercase Latin

letters a, b, … y, z, the paths by bold letters p, q, r,…, the sets by

capital letters A, B, … Y, Z and the families of sets by capital bold

letters A, B, … Y, Z.

The switch s rule is specified as :asb where  is the packet

identifier, a and b are vertices (switches or hosts) connected with

the switch s by the edges. This rule means that the switch s after

receiving a packet with the identifier  from its neighbor a forwards

it to the neighbor b without changes. The cloning of the packet

occurs when there are several rules in the switch s differing only

by the neighbor b.

Proposition 1. The complete path a1...an is implemented for

packets with an identifier  if and only if each switch ai, i = 2..n –

1, has a rule :ai–1aiai+1.

Corollary 1. If on the data plane, there are two complete paths

pabq and p'abq' for the identifier  which have a common arc ab,

then the data plane has complete paths pabq' and p'abq for this

identifier.

Thus, when implementing a set P of complete paths on the data

plane, the corresponding set P of the switch rules is installed,

which in turn induces the set of implemented pats that is a superset

of the set P; this superset denoted by P is called the arc closure

of the set P. In [6], the following statements are established.

Proposition 2. The set P is induced by the following

inference rules:

p  P implies p  P,

pabq  P & p`abq`  P implies pabq`  P.

Therefore, the virtual network is set by a pair of sets (Z, P)

where Z is a set of packet identifiers while P is a set of complete

paths. The packet with the identifier of the set Z passes through the

path(s) of the set P.

Proposition 3. There are no undesired paths when

implementing a set P if and only if P = P, i.e. the set P is arc

closed.

The generation of undesired paths not necessary is a problem

if all the paths are edge simple, i.e. there are no cycles. For

example, the path pabqabr is not edge simple and induces an

infinite number of paths pab(qab)nr, n = 1, … .

Proposition 4. The set P is finite if and only if all paths of

P are edge simple.
In the following section, we present the algorithm [6] for

checking the presence of undesired and cycling paths for a given
pair (Z, P).

III. VERIFICATION OF ONE VIRTUAL NETWORK

Let G = (V, E) be the graph of physical connections while

(Z, P) be the specification of the virtual network to be

implemented. It is necessary to check whether there are undesired

paths generated (1) and if so whether there are cyclic paths (2). Due

to the above, undesired paths occur if P  P. Since P  P and

P is finite, the inequalities P  P and |P|  |P| are equivalent.

Apparently, there are cyclic paths among undesired paths if and

only if P is infinite.

In [6], an algorithm for verification of the presence of

undesired paths based on the directed graph L(P) is proposed.

Graph L(P) is a subgraph of the line graph of G generated by the

set of paths P. The set of vertices of the graph L(P) is the set of all

arcs of paths of P, along with two additional vertices source and

sink. An arc (ab, b'c) of the graph L(P) corresponds to a path abc

of length two in the graph G, i.e. b = b', and is carried out if and

only if in P there is a path that has the fragment abc. The arcs

(source, xa) are leading from source to all the vertices xa, where x

the head host of a path of P. The arcs (ax, sink) lead from all

vertices ax where x is the tail host of a path from P, to sink.

Proposition 5. An undesired path can only be generated by

paths of length more than two.

If a complete path in P is an undesired path, i.e., this path is

absent in P, then this path has the form pabq' or p'abq and is

generated by two complete paths pabq and p'abq', where p  p' and

q  q'. Therefore, one of paths p or p', as well as of q or q' has

nonzero length. Thus, since the paths pabq and p'abq' are

complete, a and b are switches, and then all four fragments p, p', q,

q' have nonzero length, i.e., length of pabq as well as of p'abq' is

bigger than two. Therefore, we can restrict ourselves with the paths

of P having length bigger than two. In [6] the following algorithm

for deriving graph L(P) is proposed.

Algorithm 1: Deriving graph L(P) = (VL, EL)

Input: A set P of complete paths

Output: A graph L(P)

Derive a subset Q = {q1, ..., qk} of P that contains all the paths of

length greater than two; we denote as kj the length of a path qj,

j  {1, ..., k};

VL = {source, sink};

EL = ;

j = 1;

while j < k do

 VL = VL  {(qj(1), qj(2))};

 EL = EL  {(source, (qj(1), qj(2))};

 m = 2;

 while m < kj+1 do

  VL = VL  {(qj(m), qj(m+1))};

  EL = EL  {((qj(m–1), qj(m)),

  (qj(m), qj(m+1)))};

  m++;

 EL = EL  {(qj(kj), qj(kj+1)), sink)};

 j++;

return L(P);

The complexity of Algorithm 1 depends on the number of pair-

wise comparison of arcs of paths of P that can be estimated as

O(L2) where L is the sum of lengths of paths of P. Thus, the

following statement holds.

Proposition 6. Algorithm 1 has the complexity O(L2) where L

is the sum of lengths of paths of P.

There is one-to-one correspondence between complete paths of

P which have length bigger than two and paths of the graph L(P)

from source to sink. At the same time, the edge simple paths from

P correspond to the vertex simple paths in the graph L(P). Thus,

to check the presence or absence of undesired paths in P, it is

enough to calculate the number of paths in L(P) from source to sink

and compare it with the number of paths in P. Therefore, as it is

said in [6], the paths of P are edge simple if and only if there are

no cycles in the graph L(P).

To verify the above property in graph L(P), it is possible to use

the DFS algorithm [8], that will be a bit modified for detecting

cycles and calculating the number of paths from source to sink. The

running time of the depth first search algorithm on the graph L(P)

is evaluated as O(m), where m is the number of arcs of the graph

L(P), m  |V|3. On the other hand, an arc of graph L(P) corresponds

a pair of different arcs of paths of P and thus, m < L2.

Proposition 7. The total complexity of Algorithm 1 and

modified DFS algorithm is O(L2).

IV. VERIFICATION OF MULTIPLE VIRTUAL NETWORKS

When n virtual networks should be implemented, two

equinumerous sets Z = { Z1, ..., Zn } and P = { P1, ..., Pn } are

given where every virtual network implements a pair (Zi, Pj),

i = 1..., j = 1.... Thus, we have two indexed families and assume

that a virtual network implements a pair (Zi, Pi), i = 1.... The

question arises whether it could happen that there are cyclic paths

when the given virtual networks are implemented together. The

reply is ‘yes’ and in Sections 4.A and 4.B two algorithms for such

verification are proposed. Here we note that the reply is ‘yes’ even

in the case when every virtual network can be implemented

separately without cyclic paths.

A. Algorithm 2 for verifying multiple virtual networks

In this section, we assume that we are given the graph of

physical connections G = (V, E) and n virtual networks as a pair of

equinumerous families: a family of sets of identifiers

Z = { Z1, ..., Zn } and a family of sets of paths P = { P1, ..., Pn }. A

pair (Zi, Pi), i = 1..n, sets the implementation of the i-th virtual

network. It is required to determine whether there are undesired

and / or cycling paths when implementing these virtual networks

and, if it is the case, to determine for which packet identifiers this

happens.

If the family Z is a partition of the union Z, i.e., a partition of

the set of all identifiers, it is sufficient to verify independently

every implementation of the virtual network (Zi, Pi), i = 1..n, since

for i  j, the sets of Zi and Zj are disjoint, i.e., these sets have no

common identifiers. But in the general case, the family Z can be a

cover of the union Z, since the sets of Zi and Zj can intersect.

Therefore, the problem is reduced to constructing the largest

partition A = { A1, ..., Am } w.r.t. the refinement such that for each

i = 1..n and j = 1..m, it holds that if Zi  Aj  then Aj  Zi. The

independent verification for this partition item can be performed as

described in Section 3. Each item Aj of the partition A, j = 1..m,

corresponds to the subset Uj of indexes such that

Aj = ({ Zi | i  Uj }) \ ({ Zi | i  Uj }) is not empty (Fig. 1). The

corresponding set Rj of paths is calculated as { Pi | i  Uj },

which requires no more than n union operations, and the family of

paths R = { R1, ..., Rm } is calculated for run time O(nm).

Fig. 1. The cover Z and the partition A

Given the cover Z. the partition A is constructed iteratively as

follows. Suppose for the first i elements of the cover, the partition

of their union that contains xi elements and the union of

corresponding subsets of P are already constructed. Consider the

(i+1)th cover element. To do the above, it is necessary to construct

the intersection of the (i+1)th cover item with each jth partition item,

j = 1..xi, and if the intersection is not empty then to construct the

difference of the jth element of the partition and (i+1)th element of

the cover. In addition, it is necessary to construct the difference of

the (i+1)th element of the cover and the union of the first i cover

elements, as well as the union of the first (i+1) elements of the

cover as the union of the (i+1)th element of the cover and the union

of the first i cover elements.

Algorithm 2: Derivation a partition from family of sets

Input: A families of sets Z = { Z1, ..., Zn } and P = { P1, ..., Pn }

Output: The largest partition A = { A1, ..., Am } w.r.t. the

refinement such that for each i = 1..n and j = 1..m, it holds that if

Zi  Aj  then Aj  Zi and corresponding family of sets

R = { R1, ..., Rm }

/* U = (U1, …, U|U |) where Uj  {1..n}, j = 1..|U|, is a family of

subsets of indexes of Z, which corresponds to the current

already derived A = (A1, …, A|U|) where

Aj = ({ Zi | i  Uj }) \ ({ Zi | i  Uj }), j = 1..|U|;

B = A;

U and A correspond to the next partition which is still

constructing; */

U = (); A = (); B = ; U = (); A = ();

for i = 1..n do

 for j = 1..|U| do

  X = Aj  Zi;

  if X =  then

   A = A(Aj);

  U = U(Uj);

  else A = A(X);

   U = U(Uj  {i});

   X = Aj \ Zi;

   if X   then

    A = A(X);

    U = U(Uj);

 X = Zi \ B;

 if X   then

  A = A(X);

  U = U({i});

  B = B  X;

 A = A; A = ();

 U = U; U = ();

R = { { Pi | i  Uj } | j = 1..|U | };

return (A, R);

Proposition 8. Algorithm 2 returns the largest partition A w.r.t.

the refinement such that for each i = 1..n and j = 1..m, it holds that

if Zi  Aj  then Aj  Zi, and the corresponding family of paths

R. The complexity of the algorithm is equal to O(nm) = O(nk),

where m is the number of partition elements, k = |Z| is the number

of different identifiers in the family Z.

At the (i+1)st step of Algorithm 2, we perform not more than

2xi + 2 operations such as intersection, difference or union of two

sets, and add the number of elements that can be fluctuated from 0

3
1 2 4

5 7

6

Z = Z1 = {1, 2, 3, 4}, Z2 = {4, 5, 6}, Z3 = {7, 1, 2}

A = A1 = {1, 2}, A2 = {3}, A3 = {4}, A4 = {5, 6}, A5 = {7}

U1 = {1, 3}, U2 = {1}, U3 = {1, 2}, U4 = {2}, U5 = {3}

to xi + 1 to the partition. Thus, xi  xi+1  2xi + 1, i = 1..n–1. Denote

by yi the total number of operations by the end of the ith step. We

have as follows: x1 = 1, y1 = 0 as in the first step we simply select

the first element of the cover; xi  xi+1  2xi + 1 for i = 1..n-1;

m = xn, yn  (2x1 + 2) + … + (2xn-1 + 2) = 2(x1 + … + xn-1) + 2(n-1)

 2(xn + … + xn) + 2(n-1) = 2(n-1)xn + 2(n-1) = 2(n-1)(xn + 1) =

2(n-1)(m + 1). This estimate for n > 1 is achieved when all xi are

equal to 1, i.e., the cover consists of n identical sets, m = 1, yn = 4n

– 2.

Thus, the complexity of constructing the partition is equal to

yn = O(nm). Note that the number m of partition elements does not

exceed the number k = |Z| of different identifiers in the family Z.

Therefore, yn = O(nk). Due to the above and the results of the

previous section, the following statement is valid.

Proposition 9. The total complexity of constructing the

partition and verification of its elements is O(mL2) = O(kL2).

The complexity of constructing the partition A and

corresponding family R of paths is O(nm) while the construction

of a graph L(P) and verification this graph for one partition item

has the complexity O(L2), and the number of such items is m. Thus,

the total complexity of constructing the partition and verifying its

elements is O(nm + mL2). Without loss of generality, we can

assume that all the sets of the family P are not empty, and thus,

n  L and O(nm + mL2) = O(mL2) = O(kL2).

B. Algorithm 3 for verifying multiple virtual networks

Similar to the previous section, given the graph of physical

connections G = (V, E) and n virtual networks as a pair of

equinumerous families: a family of sets of identifiers

Z = { Z1, ..., Zn } and a family of sets of paths P = { P1, ..., Pn }, a

pair (Zi, Pi), i = 1..n, sets the implementation of the ith virtual

network. The question is whether there are cycling paths on the

data plane when implementing these virtual networks together.

Differently from the problem statement in the previous section, it

is not necessary to determine the identifiers of packets that can

move along undesired edge simple paths and cycling paths.

The idea behind a proposed algorithm is as follows. Suppose

that there are three subfamilies V  W  Z such that the

intersection of their sets is not empty, i.e., V   and, therefore,

W  . These subfamilies can be represented as

V = { Zi | i  UV } and W = { Zi | i  UW }, where UV, UW  {1..n}

and UV  UW. Then the inclusion holds for corresponding sets of

paths: RV  RW where RV = { Pi | i  UV } and

RW = { Pi | i  UW }. If all the paths in RW are edge simple, then

all the paths in the RV are also edge simple. Therefore, it is

sufficient to check cycling paths corresponding to the maximum

subfamilies w.r.t. the inclusion of the family Z with the non-empty

intersection of sets of each subfamily, or the M-subfamilies of the

family Z, for short. For example in Fig. 1, M-subfamilies are

V = Z1 = {1, 2, 3, 4}, Z2 = {4, 5, 6},

W = Z1 = {1, 2, 3, 4}, Z3 = {7, 1, 2}. Here UV = {1, 2},

UF = {1, 3}, V = {4}, W = {1, 2}. Subfamilies V и W are

included only in one subfamily Z, but Z = .

Proposition 10. The intersection of the sets of the M-subfamily

of the family Z, is an element of the partition A.

Indeed, let V  Z be some maximum M-subfamily of the

family Z. Then, due to the maximality of the subfamily V, for any

X  Z \ V, it holds that (V)  Х = . Hence

(V)  ((Z \ V)) = . Consequently, (V) \ ((Z \ V)) =

V  , and the latter means that V is an element of the partition

A.

When comparing the complexity of verification using

Algorithms 2 and 3, it is possible to compare the number of path

sets, for each of which it needs to construct a graph L(P) and verify

this graph. For Algorithm 2, this is the number of partition

elements that is at most 2n–1. For Algorithm 3, this is the number

of M-subfamilies of the family Z. Since such M-subfamilies of the

family Z form an antichain w.r.t. inclusion, their number does not

exceed the length of the maximum antichain. The latter is called

the width of the Boolean lattice Bn, which, by the Sperner's

Theorem [9], does not exceed Cn
n/2. We have

Cn
n/2 ~ 4n/2/((n/2))1/2 = (1/((/2)1/2))2n. This is in

(/2)1/2  1,25*n1/2 times less than 2n–1 for Algorithm 2.

Algorithm 2 constructs a family U = (U1, …, Um), where

Uj  {1..n} for j = 1..m is a family of index subsets of Z

corresponding to the partition A = (A1, …, Am), where

Aj = ({ Zi | i  Uj }) \ ({ Zi | i  Uj })   for j = 1..m, and the

corresponding family of paths R = (R1, …, Rm) where

Rj = { { Pi | i  Uj }. Therefore, it is enough to look for cycling

paths for the sets Rj, corresponding to the maximum sets Uj w.r.t.

the nesting.

Algorithm 3: Derivation a family R of sets of paths,

corresponding to the M-subfamilies of the family Z.

Input: Families of subsets Z = { Z1, ..., Zn } and P = { P1, ..., Pn }

Output: A family R = { R1, ..., Rm' }

/* U = (U1, …, U|U |), where Uj  {1..n} for j = 1..|U|, is a family

of subsets of indexes by Z, corresponding to the current

(already constructed) partition A = (A1, …, A|U |), where

Aj = ({ Zi | i  Uj }) \ ({ Zi | i  Uj }) for j = 1..|U|;

B = A;

U and A — U and A corresponding to the next partition

which is still constructing; */

U = (); A = (); B = ; U = (); A = ();

for i = 1..n do

 for j = 1..|A| do

  X = Aj  Zi;

  if X =  then

   A = A(Aj);

   U = U(Uj);

  else A = A(X);

   U = U(Uj  {i});

   X = Aj \ Zi;

   if X   then

    A = A(X);

    U = U(Uj);

 X = Zi \ B;

 if X   then

  A = A(X);

  U = U({i});

  B = B  X;

 A = A; A = ();

 U = U; U = ();

i = 1;

while i < |U| do

 j = i+1;

 while j  |U| do

  if Ui  Uj then

   U = U \ {Ui};

   break;

  else if Uj  Ui then

    U = U \ {Uj};

   else j = j+1;

 if j > |U| then

  i = i+1;

R = { { Pi | i  Uj } | j  1..|U| };

return R;

Proposition 11. Algorithm 3 returns a family of paths R

corresponding to the M-subfamilies of the family Z,. The

complexity of the algorithm is equal to O(nm + m2) = O(nk + k2),

where m is the number of partition elements, k = |Z| is the number

of different identifiers in the family Z.

The time complexity of constructing a partition is O(nm). The

pair-wise comparison of the subsets of the family U has the

complexity O(m2). We then select the subfamily of m' maximum

sets of indices w.r.t. the nesting and based on it a family R of paths

is constructing with the time complexity O(nm') . As m'  m  k,

the total complexity is O(nm + m2 + nm) = O(nm + m2) =

O(nk + k2).

Proposition 12. The total complexity of Algorithm 3 and

corresponding verification is O(mL2) = O(kL2).

The complexity of Algorithm 3 is equal to O(nm + m2), the

constructing of the graph L(P) and the verification of this graph for

one set of paths has the complexity O(L2), and the number of such

elements is m'  m  k. Thus, the total complexity of construction

and verification is equal to O(nm + m2 + mL2). Without loss of

generality, we assume that all the sets of the family P are not

empty, and thus, n  L, m  L and O(nm + m2 + mL2) = O(mL2) =

O(kL2).

V. A SUFFICIENT CONDITION FOR THE POSSIBILITY OF

IMPLEMENTING ANY SET OF VIRTUAL NETWORKS WITHOUT

UNDESIRED PATHS

In [5], the following problem is investigated: which properties

should have a graph G of physical connections in order it could be

possible to implement any virtual network without generating

undesired, duplicate and / or cycling paths.

In this section, the specification of a virtual network is a pair

(Z, D), where Z is a set of packet identifiers that can be sent over

this virtual network, and D is a set of (ordered) pairs of hosts (a

sender, a recipient). The set D is called normal if it does not contain

a pair of identical hosts (x, x). The implementation of the virtual

network (Z, D) is a pair (Z, P), where P is a set of complete paths

that connect all pairs of hosts of D. Given a complete path p, h(p)

denotes a pair (the head host of the path p, the tail host of the path

p). The set of host pairs connected by paths of P is denoted by

H(P) = {h(p) | p  P}. The pair (Z, P) is the implementation of a

virtual network (Z, D) if H(P) = D. However, as shown in Section

2, when the switch rules defined by paths of P are implemented,

additional paths can be generated, and in general, these rules

generate the superset of paths P  P. The path p  P is

undesired if h(p)  D. The implementation is strict if it no

undesired paths are generated, i.e. H(P) = D.

Graph G for which any normal set of pairs of hosts can be

strictly implemented without cycling paths, is called perfect.

A finite set P of complete paths connecting all pairs of different

hosts, i.e. set P for which H(P) is the greatest normal set of pairs

of hosts, is called perfect if P does not have two paths pabr and

p'abr', where p  p' and r  r'. In this case P is arc closed, i.e. in

this case, the arc closure does not induce undesired paths.

Proposition 13. Graph G for which there is a perfect set P of

paths, is perfect. In this case, the set P for each normal set of host

pairs contains its strict implementation without cycling paths as a

subset, as well as without duplication if P does not contain

duplicate paths.

In [7], the above condition is weakened: undesired paths are

allowed, but only such that do not violate the security policy. This

policy is described in terms of priorities assigned to hosts, and is

formulated as a requirement: the priority of the host receiving the

packet must be no less than the priority of the host sending the

packet. The pair of hosts (x, y) is called permissible if the priority

of the host x is not more than the priority of the host y. A complete

path p which does not violate the security requirements, i.e. is the

pair h(p) is permissible, is called permissible. The implementation

(Z, P) of the virtual network (Z, D) is called permissible if the arc

closure P contains only permissible paths. Graph G where a

normal set of permissible pairs of hosts can be implemented

without cycles, is called permissibly perfect or p-perfect for short.

Finite set P of complete paths that connects all permissible pairs of

different hosts is called p-perfect if P has no two paths pabr and

p'abr' where p  p' and r  r'.

Proposition 14. Graph G for which there is a p-perfect set P of

paths, is p-perfect. In this case, the set P for each permissible

normal set of host pairs contains its strict implementation without

cycles as a subset, as well as without duplication if P does not

contain duplicate paths.

At the same time, as shown in [7], the presence in the graph G

of the perfect (p-perfect) set paths is sufficient, but is not a

necessary condition that the graph G is perfect (p-perfect).

The concept of "perfection" is now extended to a set of virtual

networks specified by a pair of equinumerous families: a family of

sets of identifiers Z = { Z1, ..., Zn } and a family of normal sets of

pairs of hosts D = { D1, ..., Dn }. If hosts have priorities and there

is the security policy based on them, the virtual network (Zi, Di) is

permissible if the set Di of hosts is permissible.

Proposition 15. If the graph G has a perfect (p-perfect) set P

paths, then any set (Z, D) of (permissible) virtual networks is

(permissibly) strictly implemented without cycles. In this case, the

set P for each (permissible) normal set Di of pairs of hosts contains

its strict (permissible) implementation Pi without cycles as a subset

Pi  P. If P does not contain duplicate paths, then Pi also does not

contain duplicate paths.

Suppose that the graph G has a perfect (p-perfect) set P of

paths. Propositions 13 and 14 imply as follows. First, any two paths

from P do not generate paths other than themselves, and, second,

the fact that for any (permissible) normal set D of pairs of hosts the

set P contains a subset PD  P of paths connecting these pairs of

hosts, i.e. H(PD) = D. Thus, for each virtual network (Zi, Di), there

exists the cycle-free implementation (Zi, Pi) where Pi  P, which

is strict (permissible). If P does not contain duplicate paths, then

any subset Pi of P has no duplicate paths.

VI. CONCLUSIONS

In this article, algorithms are proposed for verifying the
implementation of virtual networks on the SDN data plane; the

purpose of such checking is the detection of undesired paths for
which packets are sent, cyclic paths and duplicate paths. Even if
each virtual network is verified separately and has no effects
specified above, the joint implementation of several virtual network
still can have these effects. Consequently, two modifications of the
algorithm for verifying the implementation of one virtual network
to verify the joint implementation of several virtual networks are
proposed. All proposed algorithms have polynomial complexity
w.r.t. the source data. The possibility of implementing any virtual
networks on the SDN data plane without undesirable effects is also
considered in the paper for which a sufficient condition is
established. In the future, we plan to investigate more effects, for
example, such as network overload problems and other kinds of
specifications for user requests.

ACKNOWLEDGMENT

This work is partly supported by RFBR project N 20-07-
00338 А.

REFERENCES

[1] Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B., Lake, D.,
Finnegan, J., Viljoen, N., Miller, M., and Rao, N. (2013). Are we ready
for sdn? implementation challenges for software-defined networks. IEEE
Communications Magazine, 51(7):36–43.

[2] Mohammed, A. H., Khaleefah, R. M., k. Hussein, M., and Amjad
Abdulateef, I. (2020). A review software defined networking for internet
of things. In 2020 International Congress on Human-Computer
Interaction, Optimization and Robotic Applications (HORA), pages 1–8.

[3] OpenNetworkingFoundation (2012). Software-defined networking: The
new norm for networks. ONF White Paper.

[4] OpenNetworkingFoundation (2015). Openflow switch specification
version 1.5. 0. ONF Specification.

[5] Igor Burdonov, Nina Yevtushenko, Alexandr Kossachev. Implementing
a Virtual Network on the SDN Data Plane. Proceedings 2020 IEEE East-
West Design & Test Symposium (EWDTS). Varna, Bulgaria, September
4 – 7, 2020. pp. 279-283. ISBN: 978-1-7281-9898-9.

[6] Burdonov, I.; Kossachev, A.; Yevtushenko, N.; López, J.; Kushik, N. and
Zeghlache, D. (2021). Preventive Model-based Verification and
Repairing for SDN Requests. In Proceedings of the 16th International
Conference on Evaluation of Novel Approaches to Software Engineering
- ENASE, ISBN 978-989-758-508-1 ISSN 2184-4895, pages 421-428.
DOI: 10.5220/0010494504210428.

[7] Burdonov I.B., Yevtushenko N.V., Kossatchev A.S. Secure
Implementing a Virtual Network on the SDN Data Plane. Proceedings of
the Institute for System Programming of the RAS (Proceedings of ISP
RAS). 2021;33(1):123-136. (In Russ.).

[8] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009).
Introduction to algorithms. MIT press.

[9] Sperner, Emanuel (1928), "Ein Satz über Untermengen einer endlichen
Menge", Mathematische Zeitschrift (in German), 27 (1): 544–548.

