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Abstract— Software Defined Network (SDN) technology is one 

of the modern network virtualization technologies. When 

implementing a virtual network on the SDN data plane, undesired 

effects may occur: the appearance of undesired paths where 

packages can be sent, "looping" when the packages are infinitely 

cycled and infinitely cloned, duplicate paths when the host receives 

the same package several times. We show that these effects can 

occur for the joint implementation of several virtual networks 

even if the implementation of each separate virtual network does 

not cause these effects. A method for verifying the implementation 

of several virtual networks is proposed. A sufficient condition is 

established for the graph of physical connections when any set of 

virtual networks can be implemented without the occurrence of 

the above undesirable effects.  
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I. INTRODUCTION 

Software defined networking [1][2][3] with separated data and 

control planes is one of the main technologies for implementing 

virtual networks. On the data plane, hosts exchange packets 

through intermediate switches. A switch after receiving a packet 

forwards it without any changes to one or more of its neighbors 

(hosts or switches); the choice of neighbor nodes depends on the 

neighbor (a host or a switch) from which the packet has been 

received and on the parameter values of the packet header. If the 

switch forwards a packet to several neighbors, then this means that 

the packet is cloned and then its clones are moved over the network 

independently of each other. The switch rules are set by the SDN 

controller(-s) [4]. The set of parameter values of the packet header 

affecting the packet forwarding is called the packet identifier. 

Packets with different identifiers are moved over the network 

independently of each other using different paths from a host-

sender to a host-recipient. 

The virtual network is described by the set of (ordered) pairs of 

hosts (a sender, a recipient) with corresponding paths for packets 

with the given identifiers. This, in turn, defines the switch rules that 

must be installed when the switches are configured. 

When implementing a virtual network for a given set of paths, 

the problem of the implementation of undesired paths can occur 

[5][6][7]. First, it is a problem of duplicating paths when a host 

receives the same packet several times. Second, the cycling paths 

where packets can infinitely move can also occur. This problem 

was studied in a number of works [5][6][7] in which a number of 

solutions have been proposed. 

Here we note that the problem of undesired paths can occur 

when implementing several virtual networks even in the case when 

the implementation of each separate virtual network does not 

induce undesired paths. The reason is the interference of the 

implementations of different virtual networks for packets with the 

same packet identifier, and this paper is devoted to the study of 

such influence. The main attention is paid to the problem of the 

cycle appearance due to the composition of path segments that 

appear in the implementation of different virtual networks for the 

same packet identifiers. 
The structure of the paper is as follows. Section 2 contains the 

preliminaries and problem setting. Sections 3, 4 and 5 are devoted 
to the verification of the implementations of several virtual 
networks, especially for the absence of cycles. In Section 3, the 
algorithm is presented [6] for checking the existence of undesired 
paths and, in particular, the absence of cycling paths when 
implementing one virtual network. In Section 4.A, an algorithm is 
proposed for checking the absence of cycling paths when 
implementing several virtual networks. In Section 4.B, the 
algorithm of Section 4.A is modified to be more efficient but 
without specifying packet identifiers for cycling paths. A sufficient 
condition for implementing any set of virtual networks without 
undesired paths is proposed in Section 5. This condition is an 
extension of a similar condition for implementing a separate virtual 
network proposed in [5][7]. In conclusions, the results are summed 
up and the directions for future research are discussed. 

II. PRELIMINARIES AND THE PROBLEM SETTING 

The data plane of the software defined network is modeled by 

a finite undirected connected graph G = (V, E) without multiple 

edges and loops, where V is a set of vertices that are hosts and 

switches, and E  V  V is a set of edges displaying physical 

communication channels between vertices. We assume that each 

host is connected with exactly one switch. Without loss of 

generality, we can assume that all the vertices of degree one are 

hosts. 

Since the graph G is undirected and there are no multiple edges, 

the edge can be defined as a pair of vertices a and b, which are 

connected by this edge: ab or ba. A path is a sequence of neighbor 

vertices through which it passes. The path is called complete if the 

head and tail vertices are hosts, while all intermediate vertices are 

switches. The path where all the vertices (arcs) are pair-wise 

different, is called the vertex simple (or edge simple). 

We further denote the vertices of the graph by lowercase Latin 

letters a, b, … y, z, the paths by bold letters p, q, r,…, the sets by 

capital letters A, B, … Y, Z and the families of sets by capital bold 

letters A, B, … Y, Z. 



The switch s rule is specified as :asb where  is the packet 

identifier, a and b are vertices (switches or hosts) connected with 

the switch s by the edges. This rule means that the switch s after 

receiving a packet with the identifier  from its neighbor a forwards 

it to the neighbor b without changes. The cloning of the packet 

occurs when there are several rules in the switch s differing only 

by the neighbor b. 

Proposition 1. The complete path a1...an is implemented for 

packets with an identifier  if and only if each switch ai, i = 2..n – 

1, has a rule :ai–1aiai+1. 

Corollary 1. If on the data plane, there are two complete paths 

pabq and p'abq' for the identifier  which have a common arc ab, 

then the data plane has complete paths pabq' and p'abq for this 

identifier. 

Thus, when implementing a set P of complete paths on the data 

plane, the corresponding set P of the switch rules is installed, 

which in turn induces the set of implemented pats that is a superset 

of the set P; this superset denoted by P is called the arc closure 

of the set P. In [6], the following statements are established. 

Proposition 2. The set P is induced by the following 

inference rules: 

p  P   implies p  P, 

pabq  P & p`abq`  P  implies pabq`  P. 

Therefore, the virtual network is set by a pair of sets (Z, P) 

where Z is a set of packet identifiers while P is a set of complete 

paths. The packet with the identifier of the set Z passes through the 

path(s) of the set P. 

Proposition 3. There are no undesired paths when 

implementing a set P if and only if P = P, i.e. the set P is arc 

closed. 

The generation of undesired paths not necessary is a problem 

if all the paths are edge simple, i.e. there are no cycles.  For 

example, the path pabqabr is not edge simple and induces an 

infinite number of paths pab(qab)nr,  n = 1, … . 

Proposition 4. The set P is finite if and only if all paths of 

P are edge simple. 
In the following section, we present the algorithm [6] for 

checking the presence of undesired and cycling paths for a given 
pair (Z, P). 

III. VERIFICATION OF ONE VIRTUAL NETWORK 

Let G = (V, E) be the graph of physical connections while 

(Z, P) be the specification of the virtual network to be 

implemented. It is necessary to check whether there are undesired 

paths generated (1) and if so whether there are cyclic paths (2). Due 

to the above, undesired paths occur if P  P. Since P  P and 

P is finite, the inequalities P  P and |P|  |P| are equivalent. 

Apparently, there are cyclic paths among undesired paths if and 

only if P is infinite. 

In [6], an algorithm for verification of the presence of 

undesired paths based on the directed graph L(P) is proposed. 

Graph L(P) is a subgraph of the line graph of G generated by the 

set of paths P. The set of vertices of the graph L(P) is the set of all 

arcs of paths of P, along with two additional vertices source and 

sink. An arc (ab, b'c) of the graph L(P) corresponds to a path abc 

of length two in the graph G, i.e. b = b', and is carried out if and 

only if in P there is a path that has the fragment abc. The arcs 

(source, xa) are leading from source to all the vertices xa, where x 

the head host of a path of P. The arcs (ax, sink) lead from all 

vertices ax where x is the tail host of a path from P, to sink. 

Proposition 5. An undesired path can only be generated by 

paths of length more than two. 

If a complete path in P is an undesired path, i.e., this path is 

absent in P, then this path has the form pabq' or p'abq and is 

generated by two complete paths pabq and p'abq', where p  p' and 

q  q'. Therefore, one of paths p or p', as well as of q or q' has 

nonzero length. Thus, since the paths pabq and p'abq' are 

complete, a and b are switches, and then all four fragments p, p', q, 

q' have nonzero length, i.e., length of pabq as well as of p'abq' is 

bigger than two. Therefore, we can restrict ourselves with the paths 

of P having length bigger than two. In [6] the following algorithm 

for deriving graph L(P) is proposed. 

 

Algorithm 1: Deriving graph L(P) = (VL, EL) 

Input: A set P of complete paths 

Output: A graph L(P) 

Derive a subset Q = {q1, ..., qk} of P that contains all the paths of 

length greater than two; we denote as kj the length of a path qj, 

j  {1, ..., k}; 

VL = {source, sink}; 

EL = ; 

j = 1; 

while j < k do 

 VL = VL  {(qj(1), qj(2))}; 

 EL = EL  {(source, (qj(1), qj(2))}; 

 m = 2; 

 while m < kj+1 do 

  VL = VL  {(qj(m), qj(m+1))}; 

  EL = EL  {((qj(m–1), qj(m)), 

  (qj(m), qj(m+1)))}; 

  m++; 

 EL = EL  {(qj(kj), qj(kj+1)), sink)}; 

 j++; 

return L(P); 

 

The complexity of Algorithm 1 depends on the number of pair-

wise comparison of arcs of paths of P that can be estimated as 

O(L2) where L is the sum of lengths of paths of P. Thus, the 

following statement holds. 

Proposition 6. Algorithm 1 has the complexity O(L2) where L 

is the sum of lengths of paths of P. 

There is one-to-one correspondence between complete paths of 

P which have length bigger than two and paths of the graph L(P) 

from source to sink. At the same time, the edge simple paths from 

P correspond to the vertex simple paths in the graph L(P). Thus, 

to check the presence or absence of undesired paths in P, it is 

enough to calculate the number of paths in L(P) from source to sink 

and compare it with the number of paths in P. Therefore, as it is 

said in [6], the paths of P are edge simple if and only if there are 

no cycles in the graph L(P). 

To verify the above property in graph L(P), it is possible to use 

the DFS algorithm [8], that will be a bit modified for detecting 

cycles and calculating the number of paths from source to sink. The 

running time of the depth first search algorithm on the graph L(P) 

is evaluated as O(m), where m is the number of arcs of the graph 

L(P), m  |V|3. On the other hand, an arc of graph L(P) corresponds 

a pair of different arcs of paths of P and thus, m < L2. 



Proposition 7. The total complexity of Algorithm 1 and 

modified DFS algorithm is O(L2). 

IV. VERIFICATION OF MULTIPLE VIRTUAL NETWORKS 

When n virtual networks should be implemented, two 

equinumerous sets Z = { Z1, ..., Zn } and P = { P1, ..., Pn } are 

given where every virtual network implements a pair (Zi, Pj), 

i = 1..., j = 1.... Thus, we have two indexed families and assume 

that a virtual network implements a pair (Zi, Pi), i = 1.... The 

question arises whether it could happen that there are cyclic paths 

when the given virtual networks are implemented together. The 

reply is ‘yes’ and in Sections 4.A and 4.B two algorithms for such 

verification are proposed. Here we note that the reply is ‘yes’ even 

in the case when every virtual network can be implemented 

separately without cyclic paths. 

A. Algorithm 2 for verifying multiple virtual networks 

In this section, we assume that we are given the graph of 

physical connections G = (V, E) and n virtual networks as a pair of 

equinumerous families: a family of sets of identifiers 

Z = { Z1, ..., Zn } and a family of sets of paths P = { P1, ..., Pn }. A 

pair (Zi, Pi), i = 1..n, sets the implementation of the i-th virtual 

network. It is required to determine whether there are undesired 

and / or cycling paths when implementing these virtual networks 

and, if it is the case, to determine for which packet identifiers this 

happens. 

If the family Z is a partition of the union Z, i.e., a partition of 

the set of all identifiers, it is sufficient to verify independently 

every implementation of the virtual network (Zi, Pi), i = 1..n, since 

for i  j, the sets of Zi and Zj are disjoint, i.e., these sets have no 

common identifiers. But in the general case, the family Z can be a 

cover of the union Z, since the sets of Zi and Zj can intersect. 

Therefore, the problem is reduced to constructing the largest 

partition A = { A1, ..., Am } w.r.t. the refinement such that for each 

i = 1..n and j = 1..m, it holds that if Zi  Aj  then  Aj   Zi. The 

independent verification for this partition item can be performed as 

described in Section 3. Each item Aj of the partition A, j = 1..m, 

corresponds to the subset Uj of indexes such that 

Aj = ({ Zi | i  Uj }) \ ({ Zi | i  Uj }) is not empty (Fig. 1). The 

corresponding set Rj of paths is calculated as { Pi | i  Uj }, 

which requires no more than n union operations, and the family of 

paths R = { R1, ..., Rm } is calculated for run time O(nm). 

 

 

Fig. 1. The cover Z and the partition A 

Given the cover Z. the partition A is constructed iteratively as 

follows. Suppose for the first i elements of the cover, the partition 

of their union that contains xi elements and the union of 

corresponding subsets of P are already constructed. Consider the 

(i+1)th cover element. To do the above, it is necessary to construct 

the intersection of the (i+1)th cover item with each jth partition item, 

j = 1..xi, and if the intersection is not empty then to construct the 

difference of the jth element of the partition and (i+1)th element of 

the cover. In addition, it is necessary to construct the difference of 

the (i+1)th element of the cover and the union of the first i cover 

elements, as well as the union of the first (i+1) elements of the 

cover as the union of the (i+1)th element of the cover and the union 

of the first i cover elements. 

 

Algorithm 2: Derivation a partition from family of sets 

Input: A families of sets Z = { Z1, ..., Zn } and P = { P1, ..., Pn } 

Output: The largest partition A = { A1, ..., Am } w.r.t. the 

refinement such that for each i = 1..n and j = 1..m, it holds that if 

Zi  Aj  then  Aj   Zi and corresponding family of sets 

R = { R1, ..., Rm } 

/* U = (U1, …, U|U |) where Uj  {1..n}, j = 1..|U|, is a family of 

subsets of indexes of Z, which corresponds to the current 

already derived A = (A1, …, A|U|) where 

Aj = ({ Zi | i  Uj }) \ ({ Zi | i  Uj }), j = 1..|U|; 

B = A; 

U and A correspond to the next partition which is still 

constructing; */ 

U = (); A = (); B = ; U = (); A = (); 

for i = 1..n do 

 for j = 1..|U| do 

  X = Aj  Zi; 

  if X =  then  

   A = A(Aj);  

  U = U(Uj); 

  else A = A(X); 

    U = U(Uj  {i}); 

    X = Aj \ Zi; 

    if X   then 

     A = A(X); 

     U = U(Uj); 

 X = Zi \ B; 

 if X   then 

  A = A(X); 

  U = U({i}); 

  B = B  X; 

 A = A; A = (); 

 U = U; U = (); 

R = { { Pi | i  Uj } | j = 1..|U | }; 

return (A, R); 

 

Proposition 8. Algorithm 2 returns the largest partition A w.r.t. 

the refinement such that for each i = 1..n and j = 1..m, it holds that 

if Zi  Aj  then  Aj   Zi, and the corresponding family of paths 

R. The complexity of the algorithm is equal to O(nm) = O(nk), 

where m is the number of partition elements, k = |Z| is the number 

of different identifiers in the family Z. 

At the (i+1)st step of Algorithm 2, we perform not more than 

2xi + 2 operations such as intersection, difference or union of two 

sets, and add the number of elements that can be fluctuated from 0 

3 
1 2 4 

5 7 

6 

Z = Z1 = {1, 2, 3, 4}, Z2 = {4, 5, 6}, Z3 = {7, 1, 2} 

A = A1 = {1, 2}, A2 = {3}, A3 = {4}, A4 = {5, 6}, A5 = {7} 

U1 = {1, 3}, U2 = {1}, U3 = {1, 2}, U4 = {2}, U5 = {3} 



to xi + 1 to the partition. Thus, xi  xi+1  2xi + 1, i = 1..n–1. Denote 

by yi the total number of operations by the end of the ith step. We 

have as follows: x1 = 1, y1 = 0 as in the first step we simply select 

the first element of the cover; xi  xi+1  2xi + 1 for i = 1..n-1; 

m = xn, yn  (2x1 + 2) + … + (2xn-1 + 2) = 2(x1 + … + xn-1) + 2(n-1) 

 2(xn + … + xn) + 2(n-1) = 2(n-1)xn + 2(n-1) = 2(n-1)(xn + 1) = 

2(n-1)(m + 1). This estimate for n > 1 is achieved when all xi are 

equal to 1, i.e., the cover consists of n identical sets, m = 1, yn = 4n 

– 2. 

Thus, the complexity of constructing the partition is equal to 

yn = O(nm). Note that the number m of partition elements does not 

exceed the number k = |Z| of different identifiers in the family Z. 

Therefore, yn = O(nk). Due to the above and the results of the 

previous section, the following statement is valid. 

Proposition 9. The total complexity of constructing the 

partition and verification of its elements is O(mL2) = O(kL2). 

The complexity of constructing the partition A and 

corresponding family R of paths is O(nm) while the construction 

of a graph L(P) and verification this graph for one partition item 

has the complexity O(L2), and the number of such items is m. Thus, 

the total complexity of constructing the partition and verifying its 

elements is O(nm + mL2). Without loss of generality, we can 

assume that all the sets of the family P are not empty, and thus, 

n  L and O(nm + mL2) = O(mL2) = O(kL2). 

B. Algorithm 3 for verifying multiple virtual networks 

Similar to the previous section, given the graph of physical 

connections G = (V, E) and n virtual networks as a pair of 

equinumerous families: a family of sets of identifiers 

Z = { Z1, ..., Zn } and a family of sets of paths P = { P1, ..., Pn }, a 

pair (Zi, Pi), i = 1..n, sets the implementation of the ith virtual 

network. The question is whether there are cycling paths on the 

data plane when implementing these virtual networks together.  

Differently from the problem statement in the previous section, it 

is not necessary to determine the identifiers of packets that can 

move along undesired edge simple paths and cycling paths. 

The idea behind a proposed algorithm is as follows. Suppose 

that there are three subfamilies V  W  Z such that the 

intersection of their sets is not empty, i.e., V   and, therefore, 

W  . These subfamilies can be represented as 

V = { Zi | i  UV } and W = { Zi | i  UW }, where UV, UW  {1..n} 

and UV  UW. Then the inclusion holds for corresponding sets of 

paths: RV  RW where RV = { Pi | i  UV } and 

RW = { Pi | i  UW }. If all the paths in RW are edge simple, then 

all the paths in the RV are also edge simple. Therefore, it is 

sufficient to check cycling paths corresponding to the maximum 

subfamilies w.r.t. the inclusion of the family Z with the non-empty 

intersection of sets of each subfamily, or the M-subfamilies of the 

family Z, for short. For example in Fig. 1, M-subfamilies are 

V = Z1 = {1, 2, 3, 4}, Z2 = {4, 5, 6}, 

W = Z1 = {1, 2, 3, 4}, Z3 = {7, 1, 2}. Here UV = {1, 2}, 

UF = {1, 3}, V = {4}, W = {1, 2}. Subfamilies V и W are 

included only in one subfamily Z, but Z = . 

Proposition 10. The intersection of the sets of the M-subfamily 

of the family Z, is an element of the partition A. 

Indeed, let V  Z be some maximum M-subfamily of the 

family Z. Then, due to the maximality of the subfamily V, for any 

X  Z \ V, it holds that (V)  Х = . Hence 

(V)  ((Z \ V)) = . Consequently, (V) \ ((Z \ V)) = 

V  , and the latter means that V  is an element of the partition 

A. 

When comparing the complexity of verification using 

Algorithms 2 and 3, it is possible to compare the number of path 

sets, for each of which it needs to construct a graph L(P) and verify 

this graph. For Algorithm 2, this is the number of partition 

elements that is at most 2n–1. For Algorithm 3, this is the number 

of M-subfamilies of the family Z. Since such M-subfamilies of the 

family Z form an antichain w.r.t. inclusion, their number does not 

exceed the length of the maximum antichain. The latter is called 

the width of the Boolean lattice Bn, which, by the Sperner's 

Theorem [9], does not exceed Cn
n/2. We have 

Cn
n/2 ~ 4n/2/((n/2))1/2 = (1/((/2)1/2))2n. This is in 

(/2)1/2  1,25*n1/2 times less than 2n–1 for Algorithm 2. 

Algorithm 2 constructs a family U = (U1, …, Um), where 

Uj  {1..n} for j = 1..m is a family of index subsets of Z 

corresponding to the partition A = (A1, …, Am), where 

Aj = ({ Zi | i  Uj }) \ ({ Zi | i  Uj })   for j = 1..m, and the 

corresponding family of paths R = (R1, …, Rm) where 

Rj = { { Pi | i  Uj }. Therefore, it is enough to look for cycling 

paths for the sets Rj, corresponding to the maximum sets Uj w.r.t. 

the nesting. 

 

Algorithm 3: Derivation a family R of sets of paths, 

corresponding to the M-subfamilies of the family Z. 

Input: Families of subsets Z = { Z1, ..., Zn } and P = { P1, ..., Pn } 

Output: A family R = { R1, ..., Rm' } 

/* U = (U1, …, U|U |), where Uj  {1..n} for j = 1..|U|, is a family 

of subsets of indexes by Z, corresponding to the current 

(already constructed) partition A = (A1, …, A|U |), where 

Aj = ({ Zi | i  Uj }) \ ({ Zi | i  Uj }) for j = 1..|U|; 

B = A; 

U and A — U and A corresponding to the next partition 

which is still constructing; */ 

U = (); A = (); B = ; U = (); A = (); 

for i = 1..n do 

 for j = 1..|A| do 

  X = Aj  Zi; 

  if X =  then 

   A = A(Aj); 

   U = U(Uj); 

  else A = A(X); 

    U = U(Uj  {i}); 

    X = Aj \ Zi; 

    if X   then 

     A = A(X); 

     U = U(Uj); 

 X = Zi \ B; 

 if X   then 

  A = A(X); 

  U = U({i}); 

  B = B  X; 

 A = A; A = (); 

 U = U; U = (); 

i = 1; 

while i < |U| do 

 j = i+1; 

 while j  |U| do 



  if Ui  Uj then 

   U = U \ {Ui}; 

   break; 

  else if Uj  Ui then 

     U = U \ {Uj}; 

    else j = j+1; 

 if j > |U| then 

  i = i+1; 

R = { { Pi | i  Uj } | j  1..|U| }; 

return R; 

 

Proposition 11. Algorithm 3 returns a family of paths R 

corresponding to the M-subfamilies of the family Z,. The 

complexity of the algorithm is equal to O(nm + m2) = O(nk + k2), 

where m is the number of partition elements, k = |Z| is the number 

of different identifiers in the family Z. 

The time complexity of constructing a partition is O(nm). The 

pair-wise comparison of the subsets of the family U has the 

complexity O(m2). We then select the subfamily of m' maximum 

sets of indices w.r.t. the nesting and based on it a family R of paths 

is constructing with the time complexity O(nm') . As m'  m  k, 

the total complexity is O(nm + m2 + nm) = O(nm + m2) = 

O(nk + k2). 

Proposition 12. The total complexity of Algorithm 3 and 

corresponding verification is O(mL2) = O(kL2). 

The complexity of Algorithm 3 is equal to O(nm + m2), the 

constructing of the graph L(P) and the verification of this graph for 

one set of paths has the complexity O(L2), and the number of such 

elements is m'  m  k. Thus, the total complexity of construction 

and verification is equal to O(nm + m2 + mL2). Without loss of 

generality, we assume that all the sets of the family P are not 

empty, and thus, n  L, m  L and O(nm + m2 + mL2) = O(mL2) = 

O(kL2). 

V. A SUFFICIENT CONDITION FOR THE POSSIBILITY OF 

IMPLEMENTING ANY SET OF VIRTUAL NETWORKS WITHOUT 

UNDESIRED PATHS 

In [5], the following problem is investigated: which properties 

should have a graph G of physical connections in order it could be 

possible to implement any virtual network without generating 

undesired, duplicate and / or cycling paths. 

In this section, the specification of a virtual network is a pair 

(Z, D), where Z is a set of packet identifiers that can be sent over 

this virtual network, and D is a set of (ordered) pairs of hosts (a 

sender, a recipient). The set D is called normal if it does not contain 

a pair of identical hosts (x, x). The implementation of the virtual 

network (Z, D) is a pair (Z, P), where P is a set of complete paths 

that connect all pairs of hosts of D. Given a complete path p, h(p) 

denotes a pair (the head host of the path p, the tail host of the path 

p). The set of host pairs connected by paths of P is denoted by 

H(P) = {h(p) | p  P}. The pair (Z, P) is the implementation of a 

virtual network (Z, D) if H(P) = D. However, as shown in Section 

2, when the switch rules defined by paths of P are implemented, 

additional paths can be generated, and in general, these rules 

generate the superset of paths P  P. The path p  P is 

undesired if h(p)  D. The implementation is strict if it no 

undesired paths are generated, i.e. H(P) = D. 

Graph G for which any normal set of pairs of hosts can be 

strictly implemented without cycling paths, is called perfect. 

A finite set P of complete paths connecting all pairs of different 

hosts, i.e. set P for which H(P) is the greatest normal set of pairs 

of hosts, is called perfect if P does not have two paths pabr and 

p'abr', where p  p' and r  r'. In this case P is arc closed, i.e. in 

this case, the arc closure does not induce undesired paths. 

Proposition 13. Graph G for which there is a perfect set P of 

paths, is perfect. In this case, the set P for each normal set of host 

pairs contains its strict implementation without cycling paths as a 

subset, as well as without duplication if P does not contain 

duplicate paths. 

In [7], the above condition is weakened: undesired paths are 

allowed, but only such that do not violate the security policy. This 

policy is described in terms of priorities assigned to hosts, and is 

formulated as a requirement: the priority of the host receiving the 

packet must be no less than the priority of the host sending the 

packet. The pair of hosts (x, y) is called permissible if the priority 

of the host x is not more than the priority of the host y. A complete 

path p which does not violate the security requirements, i.e. is the 

pair h(p) is permissible, is called permissible. The implementation 

(Z, P) of the virtual network (Z, D) is called permissible if the arc 

closure P contains only permissible paths. Graph G where a 

normal set of permissible pairs of hosts can be implemented 

without cycles, is called permissibly perfect or p-perfect for short. 

Finite set P of complete paths that connects all permissible pairs of 

different hosts is called p-perfect if  P has no two paths pabr and 

p'abr' where p  p' and r  r'. 

Proposition 14. Graph G for which there is a p-perfect set P of 

paths, is p-perfect. In this case, the set P for each permissible 

normal set of host pairs contains its strict implementation without 

cycles as a subset, as well as without duplication if P does not 

contain duplicate paths. 

At the same time, as shown in [7], the presence in the graph G 

of the perfect (p-perfect) set paths is sufficient, but is not a 

necessary condition that the graph G is perfect (p-perfect). 

The concept of "perfection" is now extended to a set of virtual 

networks specified by a pair of equinumerous families: a family of 

sets of identifiers Z = { Z1, ..., Zn } and a family of normal sets of 

pairs of hosts D = { D1, ..., Dn }. If hosts have priorities and there 

is the security policy based on them, the virtual network (Zi, Di) is 

permissible if the set Di of hosts is permissible. 

Proposition 15. If the graph G has a perfect (p-perfect) set P 

paths, then any set (Z, D) of (permissible) virtual networks is 

(permissibly) strictly implemented without cycles. In this case, the 

set P for each (permissible) normal set Di of pairs of hosts contains 

its strict (permissible) implementation Pi without cycles as a subset 

Pi  P. If P does not contain duplicate paths, then Pi also does not 

contain duplicate paths. 

Suppose that the graph G has a perfect (p-perfect) set P of 

paths. Propositions 13 and 14 imply as follows. First, any two paths 

from P do not generate paths other than themselves, and, second, 

the fact that for any (permissible) normal set D of pairs of hosts the 

set P contains a subset PD  P of paths connecting these pairs of 

hosts, i.e. H(PD) = D. Thus, for each virtual network (Zi, Di), there 

exists the cycle-free implementation (Zi, Pi) where Pi  P, which 

is strict (permissible). If P does not contain duplicate paths, then 

any subset Pi of P has no duplicate paths. 

VI. CONCLUSIONS 

In this article, algorithms are proposed for verifying the 
implementation of virtual networks on the SDN data plane; the 



purpose of such checking is the detection of undesired paths for 
which packets are sent, cyclic paths and duplicate paths. Even if 
each virtual network is verified separately and has no effects 
specified above, the joint implementation of several virtual network 
still can have these effects. Consequently, two modifications of the 
algorithm for verifying the implementation of one virtual network 
to verify the joint implementation of several virtual networks are 
proposed. All proposed algorithms have polynomial complexity 
w.r.t. the source data. The possibility of implementing any virtual 
networks on the SDN data plane without undesirable effects is also 
considered in the paper for which a sufficient condition is 
established. In the future, we plan to investigate more effects, for 
example, such as network overload problems and other kinds of 
specifications for user requests. 
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